Tampilkan postingan dengan label Basic Networking. Tampilkan semua postingan
Tampilkan postingan dengan label Basic Networking. Tampilkan semua postingan

Senin, 18 Oktober 2010

Views Of Networks

Users and network administrators typically have different views of their networks. Users can share printers and some servers from a workgroup, which usually means they are in the same geographic location and are on the same LAN. A [community-of-interest network community of interest]has less of a connection of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers , and possibly also communicate via peer-to-peer technologies.

Network administrators can see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.

Both users and administrators will be aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees).[5] Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).[5]

Unofficially, the Internet is the set of users, enterprises, and content providers that are interconnected by Internet Service Providers (ISP). From an engineering viewpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).

Over the Internet, there can be business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. Especially when money or sensitive information is exchanged, the communications are apt to be secured by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users, using secure Virtual Private Network (VPN) technology.

When used for gaming one computer will need to be the server while the others play through it.






source of wikipedia 

History of computer networks


Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the nineteenth century and arguably in even earlier networks using visual signals.

In September 1940 George Stibitz used a teletype machine to send instructions for a problem set from his Model at Dartmouth College in New Hampshire to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypes to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network"Bold text, a precursor to the ARPANet.

In 1964, researchers at Dartmouth developed the Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at MIT, a research group supported by General Electric and Bell Labs used a computer DEC's to route and manage telephone connections.

Throughout the 1960s Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used datagrams or packets that could be used in a network between computer systems.

1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network (WAN).

The first widely used PSTN switch that used true computer control was the Western Electric introduced in 1965.

In 1969 the University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANET network using 50 kbit/s circuits. Commercial services using X.25 were deployed in 1972, and later used as an underlying infrastructure for expanding TCP/IP networks.

Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Today, computer networks are the core of modern communication. All modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network.





source of wikipedia